
Virtual Device Farms for Mobile App Testing at Scale:
A Pursuit for Fidelity, Efficiency, and Accessibility

Hao Lin, Jiaxing Qiu, Hongyi Wang, Zhenhua Li, Liangyi Gong,

Di Gao, Yunhao Liu, Feng Qian, Zhao Zhang, Ping Yang, Tianyin Xu

CNIC

Mobile app testing in an open ecosystem is challenging

❑ Hundreds of new Android phone models are released every year

❑ Heterogeneous hardware

2

❑ Highly-customized software

▪ Screen

▪ SoC

▪ Radio, camera, biometrics, sensors, etc.

▪ Custom Android systems

▪ Unique service platforms

Solution of Douyin’s team: physical device farm

3

❑ A massive physical device farm

▪ 5,918 device models as of Jan. 2022

▪ Popular models are updated every year

▪ Cellular + WiFi access

▪ A dedicated operation team of 15 engineers

▪ Distributed across China and US

Solution of Douyin’s team: physical device farm

4

❑ Total cost of ownership (TCO) becomes untenable

▪ > 1M dollars for building, > 0.6M dollars per year for device purchasing alone

▪ Short lifespan of mobile phones (~10 months)

▪ TCO = team salary + device purchasing + carrier/WiFi plan + power usage + …

Battery swelling Screen wear out USB port failure Camera/sensor issues

Alternative solution: cloud-based testing service

5

❑ Rentable device farms managed by service providers

+ Reduced operation cost

− Insufficient device model diversity (only 136 device models in AWS)

− Considerable testing constraints (max app size, max test time, etc.)

− Limited customizability of the testing pipeline

Cloud-based testing service is not a viable solution for Douyin

6

How about virtual devices?

❑ Emulate mobile devices on servers using virtualization techniques

❑ Already widely used by lab research

❑ Unique advantages and features

▪ Scalable, elastic, and cost-effective

▪ Useful features: instrumentation,
memory introspection, snapshot

7

Virtual devices remain controversial in industry

The fidelity concern: discrepancies between physical and virtual
devices may lead to escapes of bugs and false alarms

Even a small number could have magnified impacts
on global-scale apps like Douyin

The diverse, opaque, and ever-growing devices are hard to emulate

8

Our study goal

1. Quantitatively understand virtual devices’ fidelity and its impact

2. Explore how to improve the efficiency and accessibility of
industrial mobile app testing with virtual devices

9

Contributions

❑ A large-scale study of virtual devices for mobile app testing

▪ Analysis of testing fidelity, and root causes of discrepancies

❑ Design and implementation of a high-fidelity virtual device farm

❑ Techniques for improving virtual device fidelity

❑ Efficiency: virtual devices for continuous mobile app testing

❑ Accessibility: preliminary results of virtual devices as a service

❑ Artifact: https://github.com/Android-Emulation-Testing/emu-fidelity-ae

https://github.com/Android-Emulation-Testing/emu-fidelity-ae

10

Study methodology

Comparatively analyze apps’ test results on
virtual and physical device farms in production

11

Designing a virtual device farm

❑ A digital twin of the physical farm

▪ 5,918 virtual devices on 395 ARM servers

❑ Major design considerations

ARM servers

Binary compatible
with Android apps

▪ Host Hardware

No Framework hooking

Avoid changing
Framework behaviors

▪ Guest OS ▪ Guest App

Same app service platform

Match vendors’ app-
related customizations

▪ Each virtual device mimics one physical device

12

Building the virtual device farm

❑ Hardware: same configuration as the counterpart physical device

❑ Software: Cuttlefish Android Emulator with KVM

VMM

Kernel

Unmodified AOSP Framework

HAL-based Device Emulation

Virtio Device Drivers

Virtio Devices

Host OS (Linux) KVM/ARMCPU and memory virtualization

High-throughput devices
(GPU, network, storage)

Other devices (sensor, etc.)

Guest

Host

Service Platform AppInstall vendor-specific platforms

13

Testing and debugging tools

❑ Test case generation

▪ Model-based UI test technique to generate streams of UI events

❑ Test failure (App failure) data collection

▪ Lightweight yet fine-grained in-situ data collection via memory pruning

❑ Root cause analysis: debugging proprietary vendor components

▪ Binary taint backtracing to reconstruct instruction and data flows

14

Study overview

❑ Study Period: Jan. 1 to Mar. 31 in 2022

❑ Studied apps: Douyin and nine other global-scale apps

❑ Each version release is tested on both physical and virtual farms

15

Test failure events and root causes

❑ Test failure events

▪ 390K events on physical devices, 415K events on virtual devices

▪ 2.5% are hardware-specific, covering all the common mobile hardware

❑ Root causes

▪ A total of 873
root causes

▪ Top-10 account
for 81% events

▪ Top-10 most frequent root causes

16

Quantitative fidelity: surprisingly good

❑ Virtual devices can capture 92.4% failures on physical devices

❑ Only 1.8% of failures on virtual devices are false alarms

With sensible design,
virtual device farms can

achieve high-fidelity testing

▪ Precision and recall per app

❑ Still, they are not perfect

17

Hardware-level discrepancies

❑ Common belief: vendor-specific hardware greatly impairs fidelity

❑ Vendor-specific hardware does not result in major discrepancies

▪ Vendor-specific hardware types are not defined by standard Android HAL

Standard HAL Types
(ACCELEROMETER, GRAVITY)

Vendor Apps

Third-Party Apps

Vendor-Specific HAL Types
(RAISEUP, PUTDOWN)

HAL
Interfaces

18

Hardware-level discrepancies

❑ Bugs in common hardware drivers caused 28% false negatives

▪ Errors in MediaTek GPU drivers cause the third most frequent FN

❑ It is hard for virtual devices to incorporate vendor drivers

Vendor Drivers

Proprietary Register I/O
and MMIO Specifications

Vendor Kernel
Components

Virtual Devices

Hardware Dependencies

Software Dependencies

19

Software-level discrepancies

❑ Customizations on vanilla Android components rarely hurt

❑ Thanks to Android Compatibility Test Suite and Vendor Test Suite

CTS VTS

Compatibility Test Suite Vendor Test Suite

+

Trademark

+
GMS

❑ CTS/VTS-incompliant models show significantly reduced fidelity

20

Software-level discrepancies

❑ Vendor-specific system services incur considerable discrepancies

❑ CTS/VTS do not check interfaces between stakeholders
▪ Usually break specification of other stakeholders

▪ Top False positives

▪ Top False negatives

21

Regional discrepancies

❑ Frequency discrepancies are specific to regional ecosystems

▪ Up to 1,025× more frequent occurrences of certain failures on some
regional physical device models

Lacking well-
regulated app stores

Users are prone to
malicious/rogue apps

Aggressive defense
mechanisms

Side effects on
regular apps

22

Improving virtual device fidelity

❑ Emulator side: adapt and fix the implementation

▪ Support vendors’ malicious app defenses in AOSP

▪ Fix & report defective mechanisms

❑ Vendor side: active outreach and communication

▪ Challenge: vendors are not motivated to fix seemingly app-specific issues

▪ Solution: dynamic binary patching to provide proof of causality

Binary TaintOffending
Instruction

Rewrite/Bypass
Analysis

0x123

Address

mprotect

Vendor Component

23

Evaluation
❑ 63% of reports have been confirmed and fixes have been merged

❑ Recall: 92.4% → 94.7%; Precision: 98.2% → 99.1%

❑ Remeasure the fidelity from Jul. 1st to Sep. 30th in 2022

24

Virtual Devices for Continuous Testing

❑ Reshaping the testing infrastructure of Douyin

▪ Traditional physical-based mobile
app testing infrastructure

▪ Modern continuous integration
and deployment (CI/CD) pipeline

▪ Continuously tests every code
change on virtual devices first

▪ Testing efficiency: 40%↑
Total operation cost: 3x↓

25

Virtual Devices as a service (VDaaS)

❑ Recently started to share the virtual device farm as a service

▪ Targeting individual or startup developers

❑ Feedback from preliminary users

▪ 28 apps were tested From Jan. 1st to Feb. 28th 2023

▪ Most of our findings can be generalized to a broader range of apps

▪ VDaaS helped detect 3× to 10× more bugs

26

Problems for future study

❑ Solutions for vendor-specific discrepancies

❑ Developing cross-component compatibility tests

▪ Possible direction: remoting apps’ interactions (e.g., function call, system
call, and I/O operation) with proprietary components to physical devices

▪ Possible direction: allow app developers to enrich CTS tests

❑ Issues of regional mobile app ecosystems

▪ Possible direction: a more systematic understanding of the conflicts of
interest among stakeholders

27

Conclusion

❑ A quantitative understanding of the virtual device testing fidelity

❑ In-depth analysis of discrepancy root causes

❑ Design and implementation of a high-fidelity virtual device farm

❑ Practices and experiences of using virtual devices to improve
testing efficiency and accessibility

❑ Artifact: https://github.com/Android-Emulation-Testing/emu-fidelity-ae

https://github.com/Android-Emulation-Testing/emu-fidelity-ae

	幻灯片 1: Virtual Device Farms for Mobile App Testing at Scale: A Pursuit for Fidelity, Efficiency, and Accessibility
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27

