MobiCom 2023

acm

sigmobile

The 29th Annual International Conference On **Mobile Computing And Networking**

Virtual Device Farms for Mobile App Testing at Scale: A Pursuit for Fidelity, Efficiency, and Accessibility

Hao Lin, Jiaxing Qiu, Hongyi Wang, Zhenhua Li, Liangyi Gong,

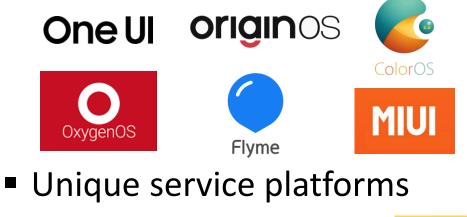
Di Gao, Yunhao Liu, Feng Qian, Zhao Zhang, Ping Yang, Tianyin Xu

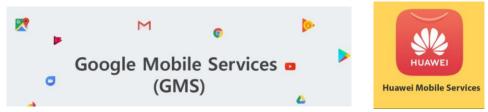
CNIC

Mobile app testing in an open ecosystem is challenging

Hundreds of new Android phone models are released every year

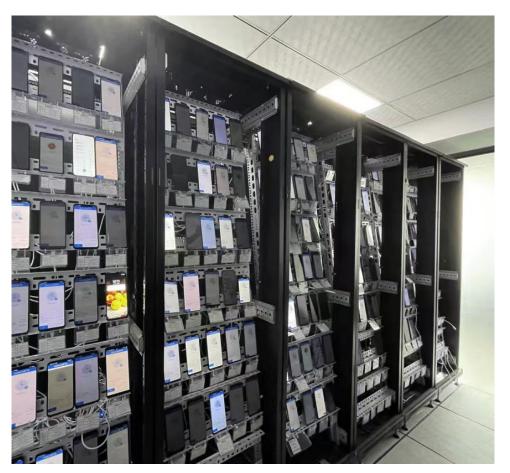
Heterogeneous hardware





Radio, camera, biometrics, sensors, etc.

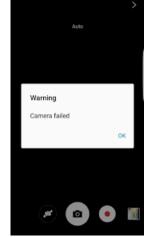
Highly-customized software


Custom Android systems

Solution of Douyin's team: physical device farm

- □ A massive physical device farm
 - Distributed across China and US
 - **5,918 device models** as of Jan. 2022
 - Popular models are updated every year
 - Cellular + WiFi access
 - A dedicated operation team of 15 engineers

Solution of Douyin's team: physical device farm

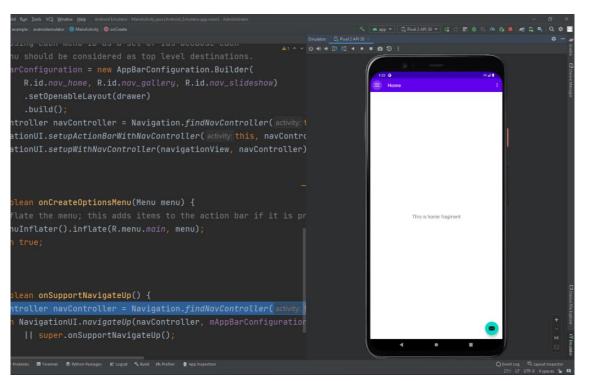

□ Total cost of ownership (TCO) becomes untenable

- TCO = team salary + device purchasing + carrier/WiFi plan + power usage + ...
- IM dollars for building, > 0.6M dollars per year for device purchasing alone
- Short lifespan of mobile phones (~10 months)

Battery swelling Screen wear out USB port failure Camera/sensor issues

Alternative solution: cloud-based testing service

□ Rentable device farms managed by service providers


- + Reduced operation cost
- Insufficient device model diversity (only 136 device models in AWS)
- Considerable testing constraints (max app size, max test time, etc.)
- Limited customizability of the testing pipeline

Cloud-based testing service is not a viable solution for Douyin

How about virtual devices?

Emulate mobile devices on servers using virtualization techniques

- □ Already widely used by lab research
- Unique advantages and features
 - Scalable, elastic, and cost-effective
 - Useful features: instrumentation, memory introspection, snapshot

Virtual devices remain controversial in industry

The diverse, opaque, and ever-growing devices are hard to emulate

The fidelity concern: discrepancies between physical and virtual devices may lead to escapes of bugs and false alarms

Even a small number could have magnified impacts on global-scale apps like Douyin

Our study goal

1. Quantitatively understand virtual devices' fidelity and its impact

2. Explore how to **improve the efficiency and accessibility** of industrial mobile app testing with virtual devices

Contributions

- □ A large-scale study of virtual devices for mobile app testing
 - Analysis of testing fidelity, and root causes of discrepancies
- Design and implementation of a high-fidelity virtual device farm
- Techniques for improving virtual device fidelity
- **Efficiency**: virtual devices for **continuous mobile app testing**
- □ Accessibility: preliminary results of virtual devices as a service
- □ Artifact: https://github.com/Android-Emulation-Testing/emu-fidelity-ae

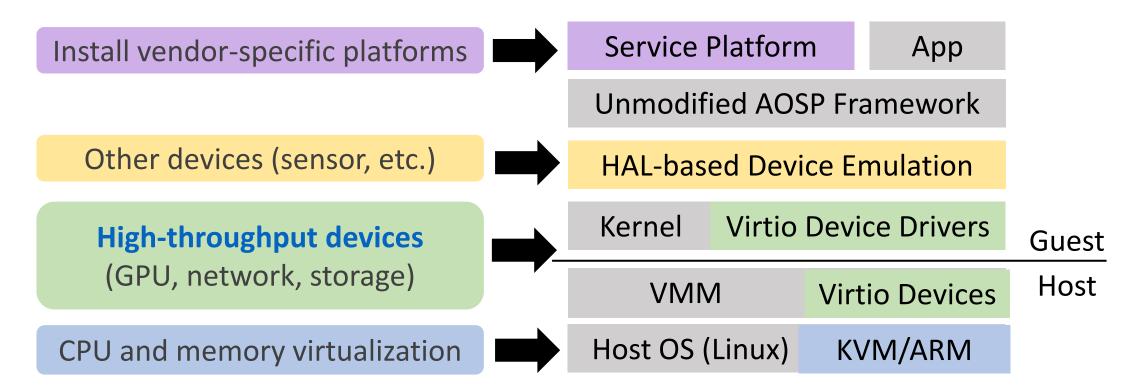
Study methodology

Comparatively analyze apps' test results on virtual and physical device farms in production

Designing a virtual device farm

□ A digital twin of the physical farm

- 5,918 virtual devices on 395 ARM servers
- Each virtual device mimics one physical device


Major design considerations

Host Hardware	Guest OS	Guest App	
ARM servers	No Framework hooking	Same app service platform	
Binary compatible with Android apps	Avoid changing Framework behaviors	Match vendors' app- related customizations	

Building the virtual device farm

□ Hardware: same configuration as the counterpart physical device

Software: Cuttlefish Android Emulator with KVM

Testing and debugging tools

- □ Test case generation
 - Model-based UI test technique to generate streams of UI events
- □ Test failure (App failure) data collection
 - Lightweight yet fine-grained in-situ data collection via memory pruning
- □ Root cause analysis: debugging proprietary vendor components
 - Binary taint backtracing to reconstruct instruction and data flows

Study overview

□ Study Period: Jan. 1 to Mar. 31 in 2022

□ Studied apps: **Douyin and nine other global-scale apps**

Each version release is tested on both physical and virtual farms

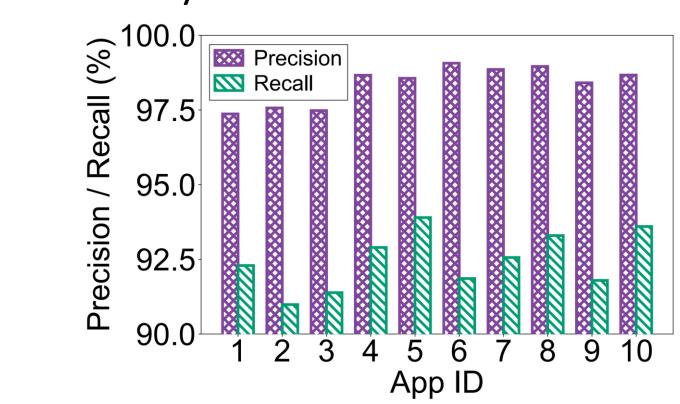
Арр	Functionality	# Users	# Releases	Test Time
Douyin	Video streaming, shopping, social media, map, education, etc.	842M	12	72 hours
Douyin Lite	Video streaming, communication, travel, photography, etc.	210M	12	72 hours
Xigua Video	Video streaming, payment, shopping, 3D gaming, etc.	180M	12	72 hours
Toutiao	News feed, shopping, web browsing, 3D gaming, etc.	530M	12	72 hours
Toutiao Lite	News feed, video streaming, security checking, payment, etc.	130M	12	72 hours
Lark	Communication, email, video conference, cloud storage, etc.	9.4M	5	30 hours
Helo	Social media, video streaming, communication, etc.	50M	12	72 hours
Fizzo Novel	E-book, shopping, 3D gaming, social media, etc.	10M	5	30 hours
Xingfu Li	E-commerce, video streaming, finance, communication, etc.	7.5M	12	72 hours
Resso Music	Music streaming, communication, social media, etc.	40M	9	54 hours

1 /

Test failure events and root causes

Test failure events

- 390K events on physical devices, 415K events on virtual devices
- **2.5% are hardware-specific**, covering all the common mobile hardware

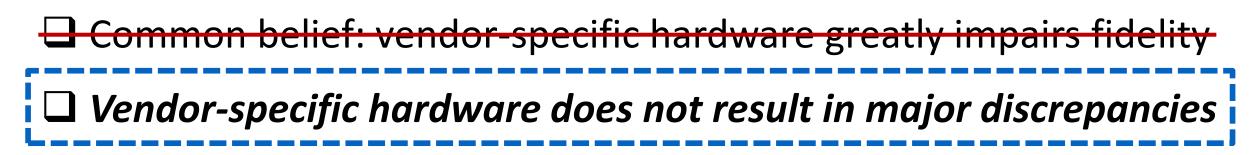

	No.	Exception/Signal	Root Cause
Root causes	1	NullPointerException (Java)	Bad resource handling during activity lifecycle shifts
	2	NullPointerException (Java)	Defects in OPPO market SDK
A total of 873	3	NullPointerException (Java)	Null object reference in app module
	4	NullPointerException (Java)	Attempt to cast null reference to non-null Kotlin class
root causes	5	ClassNotFoundException (Java)	Failed resolution of app Java classes
	6	NullPointerException (Java)	Method parameter specified as non-null is null
Top-10 account	7	ClassCastException (Java)	Incompatible Java class casts
	8	OutOfMemoryError (Java)	Out of memory when allocating Bitmap objects
for 81% events	9	NullPointerException (Java)	Method invocation on null app objects
	10	OutOfMemoryError (Java)	Out of memory when creating new threads

Top-10 most frequent root causes

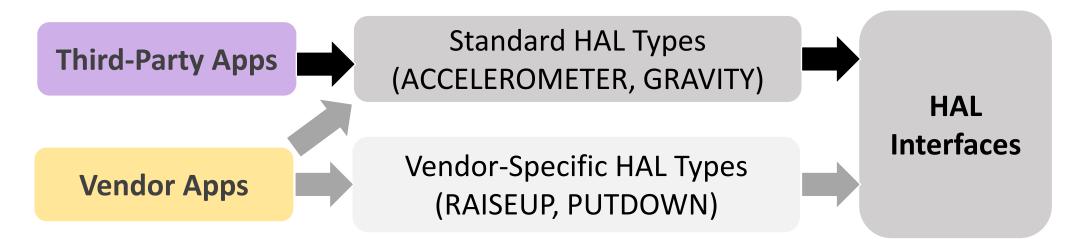
Quantitative fidelity: surprisingly good

□ Virtual devices can capture 92.4% failures on physical devices

Only 1.8% of failures on virtual devices are false alarms



With sensible design, virtual device farms can achieve high-fidelity testing


Still, they are not perfect

Precision and recall per app

Hardware-level discrepancies

Vendor-specific hardware types are not defined by standard Android HAL

Hardware-level discrepancies

Bugs in common hardware drivers caused 28% false negatives

Errors in MediaTek GPU drivers cause the third most frequent FN

□ It is hard for virtual devices to incorporate vendor drivers

Hardware Dependencies

Proprietary Register I/O and MMIO Specifications

Vendor Drivers

Software Dependencies

Vendor Kernel Components Virtual Devices

Software-level discrepancies

Customizations on vanilla Android components rarely hurt

□ Thanks to Android Compatibility Test Suite and Vendor Test Suite

□ CTS/VTS-incompliant models show significantly reduced fidelity

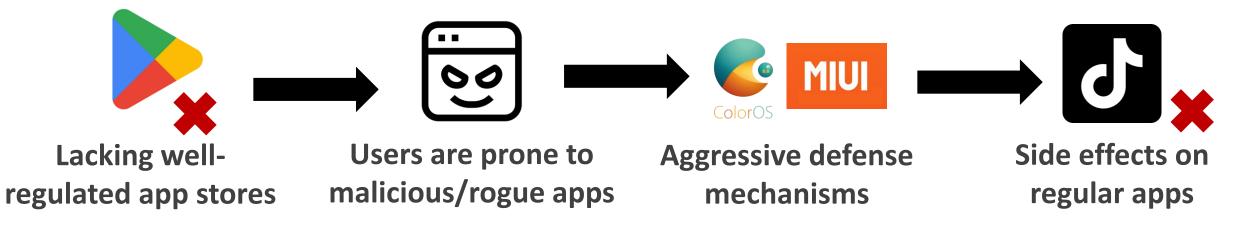
Vendor	# Models	Region	C/VTS	Precision	Recall
Sony	39	Europe	Y	97.9%	89.5%
Oneplus	38	India	Y	96.1%	90.7%
Smartisan	29	China	<u>N</u>	88.7%	<u>83.0%</u>
Vsmart	28	Vietnam	Y	96.6%	89.2%

Software-level discrepancies

Vendor-specific system services incur considerable discrepancies

□ CTS/VTS do not check interfaces between stakeholders

Usually break specification of other stakeholders

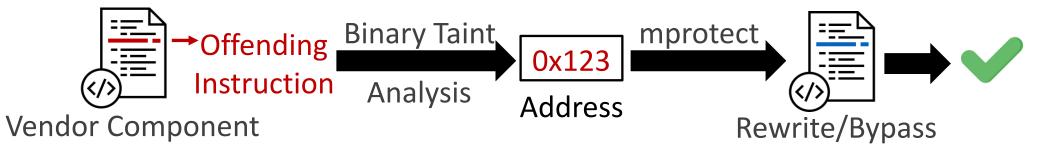

No.	Percent.	Location		Root Cause
1	53.4%	AOSP, Emulator		Graphics resource format inconsistency
2	7.3%	Emulator		Missing graphics buffer allocator
3	6.8%	AOSP, Emu	lator	Graphics buffer overrun (due to graphics format inconsistency)
Top False positives				
No.	Percent.	Location	Root	t Cause
1	14.9%	AOSP	Integ	ger overflow during implicit conversions
2	9.1%	Meizu	Impr	oper null-terminations of C/C++ strings in vendor modules
				Top False negatives

20

Regional discrepancies

Frequency discrepancies are specific to regional ecosystems

Up to 1,025 × more frequent occurrences of certain failures on some regional physical device models

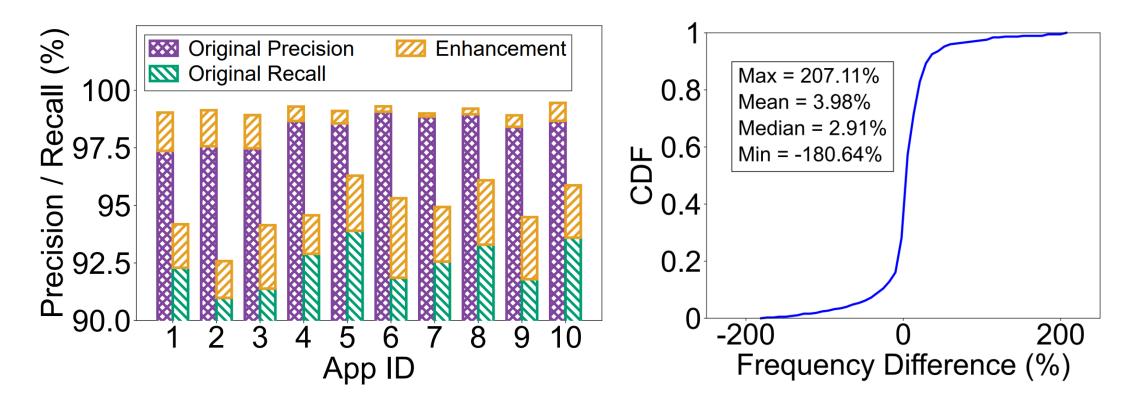

Improving virtual device fidelity

Emulator side: adapt and fix the implementation

- Support vendors' malicious app defenses in AOSP
- Fix & report defective mechanisms

□ Vendor side: active outreach and communication

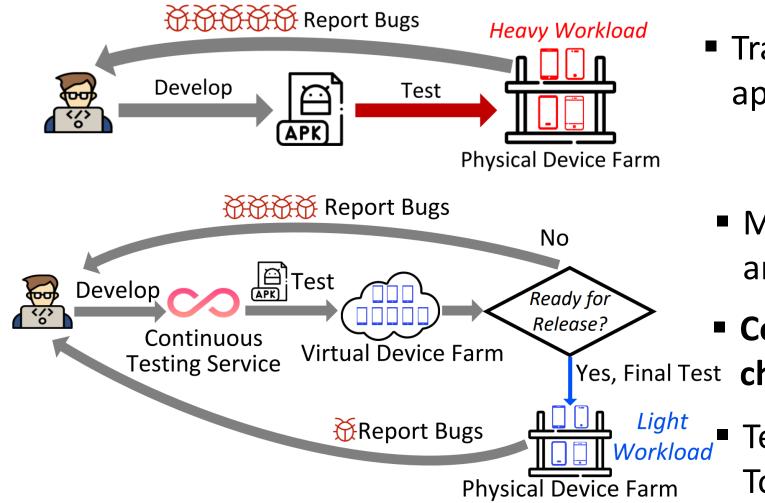
- Challenge: vendors are not motivated to fix seemingly app-specific issues
- Solution: dynamic binary patching to provide proof of causality



Evaluation

□ 63% of reports have been confirmed and fixes have been merged

□ Remeasure the fidelity from Jul. 1st to Sep. 30th in 2022


□ Recall: **92.4%** → **94.7%**; Precision: **98.2%** → **99.1%**

23

Virtual Devices for Continuous Testing

□ Reshaping the testing infrastructure of Douyin

 Traditional physical-based mobile app testing infrastructure

- Modern continuous integration and deployment (CI/CD) pipeline
- **Continuously tests every code** Yes, Final Test **change** on virtual devices first

■ Testing efficiency: 40%↑ Total operation cost: 3x↓

Virtual Devices as a service (VDaaS)

□ Recently started to share the virtual device farm as a service

Targeting individual or startup developers

□ Feedback from preliminary users

- **28** apps were tested From Jan. 1st to Feb. 28th 2023
- VDaaS helped detect 3× to 10× more bugs
- Most of our findings can be generalized to a broader range of apps

Problems for future study

□ Solutions for vendor-specific discrepancies

Possible direction: remoting apps' interactions (e.g., function call, system call, and I/O operation) with proprietary components to physical devices

Developing cross-component compatibility tests

- Possible direction: allow app developers to enrich CTS tests
- □ Issues of regional mobile app ecosystems
 - Possible direction: a more systematic understanding of the conflicts of interest among stakeholders

Conclusion

- □ A quantitative understanding of the virtual device testing fidelity
- □ In-depth analysis of discrepancy root causes
- Design and implementation of a high-fidelity virtual device farm
- Practices and experiences of using virtual devices to improve testing efficiency and accessibility
- □ Artifact: <u>https://github.com/Android-Emulation-Testing/emu-fidelity-ae</u>