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Mobile app testing in an open ecosystem is challenging

❑ Hundreds of new Android phone models are released every year 

❑ Heterogeneous hardware
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❑ Highly-customized software

▪ Screen

▪ SoC

▪ Radio, camera, biometrics, sensors, etc.

▪ Custom Android systems

▪ Unique service platforms



Solution of Douyin’s team: physical device farm
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❑ A massive physical device farm

▪ 5,918 device models as of Jan. 2022

▪ Popular models are updated every year

▪ Cellular + WiFi access

▪ A dedicated operation team of 15 engineers

▪ Distributed across China and US



Solution of Douyin’s team: physical device farm
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❑ Total cost of ownership (TCO) becomes untenable

▪ > 1M dollars for building, > 0.6M dollars per year for device purchasing alone

▪ Short lifespan of mobile phones (~10 months)

▪ TCO = team salary + device purchasing + carrier/WiFi plan + power usage + …

Battery swelling Screen wear out USB port failure Camera/sensor issues



Alternative solution: cloud-based testing service 
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❑ Rentable device farms managed by service providers

+ Reduced operation cost

− Insufficient device model diversity (only 136 device models in AWS)

− Considerable testing constraints (max app size, max test time, etc.)

− Limited customizability of the testing pipeline

Cloud-based testing service is not a viable solution for Douyin
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How about virtual devices? 

❑ Emulate mobile devices on servers using virtualization techniques

❑ Already widely used by lab research

❑ Unique advantages and features

▪ Scalable, elastic, and cost-effective

▪ Useful features: instrumentation, 
memory introspection, snapshot 
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Virtual devices remain controversial in industry

The fidelity concern: discrepancies between physical and virtual 
devices may lead to escapes of bugs and false alarms

Even a small number could have magnified impacts 
on global-scale apps like Douyin

The diverse, opaque, and ever-growing devices are hard to emulate
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Our study goal

1. Quantitatively understand virtual devices’ fidelity and its impact

2. Explore how to improve the efficiency and accessibility of 
industrial mobile app testing with virtual devices
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Contributions

❑ A large-scale study of virtual devices for mobile app testing

▪ Analysis of testing fidelity, and root causes of discrepancies 

❑ Design and implementation of a high-fidelity virtual device farm

❑ Techniques for improving virtual device fidelity

❑ Efficiency: virtual devices for continuous mobile app testing

❑ Accessibility: preliminary results of virtual devices as a service

❑ Artifact: https://github.com/Android-Emulation-Testing/emu-fidelity-ae

https://github.com/Android-Emulation-Testing/emu-fidelity-ae


10

Study methodology

Comparatively analyze apps’ test results on 
virtual and physical device farms in production
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Designing a virtual device farm

❑ A digital twin of the physical farm

▪ 5,918 virtual devices on 395 ARM servers

❑ Major design considerations

ARM servers

Binary compatible 
with Android apps

▪ Host Hardware

No Framework hooking

Avoid changing 
Framework behaviors

▪ Guest OS ▪ Guest App

Same app service platform

Match vendors’ app-
related customizations

▪ Each virtual device mimics one physical device
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Building the virtual device farm

❑ Hardware: same configuration as the counterpart physical device

❑ Software: Cuttlefish Android Emulator with KVM

VMM

Kernel

Unmodified AOSP Framework

HAL-based Device Emulation

Virtio Device Drivers 

Virtio Devices

Host OS (Linux) KVM/ARMCPU and memory virtualization

High-throughput devices 
(GPU, network, storage)

Other devices (sensor, etc.) 

Guest

Host

Service Platform AppInstall vendor-specific platforms
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Testing and debugging tools 

❑ Test case generation

▪ Model-based UI test technique to generate streams of UI events

❑ Test failure (App failure) data collection

▪ Lightweight yet fine-grained in-situ data collection via memory pruning 

❑ Root cause analysis: debugging proprietary vendor components

▪ Binary taint backtracing to reconstruct instruction and data flows 
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Study overview

❑ Study Period: Jan. 1 to Mar. 31 in 2022

❑ Studied apps: Douyin and nine other global-scale apps

❑ Each version release is tested on both physical and virtual farms
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Test failure events and root causes

❑ Test failure events

▪ 390K events on physical devices, 415K events on virtual devices

▪ 2.5% are hardware-specific, covering all the common mobile hardware

❑ Root causes

▪ A total of 873 
root causes

▪ Top-10 account 
for 81% events

▪ Top-10 most frequent root causes
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Quantitative fidelity: surprisingly good

❑ Virtual devices can capture 92.4% failures on physical devices

❑ Only 1.8% of failures on virtual devices are false alarms

With sensible design,
virtual device farms can 

achieve high-fidelity testing

▪  Precision and recall per app

❑ Still, they are not perfect
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Hardware-level discrepancies

❑ Common belief: vendor-specific hardware greatly impairs fidelity

❑ Vendor-specific hardware does not result in major discrepancies

▪ Vendor-specific hardware types are not defined by standard Android HAL 

Standard HAL Types 
(ACCELEROMETER, GRAVITY) 

Vendor Apps

Third-Party Apps

Vendor-Specific HAL Types 
(RAISEUP, PUTDOWN)

HAL 
Interfaces
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Hardware-level discrepancies

❑ Bugs in common hardware drivers caused 28% false negatives

▪ Errors in MediaTek GPU drivers cause the third most frequent FN

❑ It is hard for virtual devices to incorporate vendor drivers

Vendor Drivers

Proprietary Register I/O 
and MMIO Specifications

Vendor Kernel 
Components

Virtual Devices

Hardware Dependencies 

Software Dependencies
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Software-level discrepancies

❑ Customizations on vanilla Android components rarely hurt

❑ Thanks to Android Compatibility Test Suite and Vendor Test Suite

CTS VTS

Compatibility Test Suite Vendor Test Suite 

+

Trademark

+
GMS

❑ CTS/VTS-incompliant models show significantly reduced fidelity
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Software-level discrepancies

❑ Vendor-specific system services incur considerable discrepancies

❑ CTS/VTS do not check interfaces between stakeholders
▪ Usually break specification of other stakeholders

▪ Top False positives

▪ Top False negatives
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Regional discrepancies

❑ Frequency discrepancies are specific to regional ecosystems

▪ Up to 1,025× more frequent occurrences of certain failures on some 
regional physical device models

Lacking well-
regulated app stores

Users are prone to 
malicious/rogue apps

Aggressive defense 
mechanisms 

Side effects on 
regular apps
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Improving virtual device fidelity

❑ Emulator side: adapt and fix the implementation

▪ Support vendors’ malicious app defenses in AOSP

▪ Fix & report defective mechanisms

❑ Vendor side: active outreach and communication

▪ Challenge: vendors are not motivated to fix seemingly app-specific issues

▪ Solution: dynamic binary patching to provide proof of causality

Binary TaintOffending 
Instruction

Rewrite/Bypass
Analysis

0x123

Address

mprotect

Vendor Component
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Evaluation
❑ 63% of reports have been confirmed and fixes have been merged

❑ Recall: 92.4% → 94.7%; Precision: 98.2% → 99.1%

❑ Remeasure the fidelity from Jul. 1st to Sep. 30th in 2022
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Virtual Devices for Continuous Testing

❑ Reshaping the testing infrastructure of Douyin

▪ Traditional physical-based mobile 
app testing infrastructure

▪ Modern continuous integration 
and deployment (CI/CD) pipeline

▪ Continuously tests every code 
change on virtual devices first

▪ Testing efficiency: 40%↑ 
Total operation cost: 3x↓ 
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Virtual Devices as a service (VDaaS)

❑ Recently started to share the virtual device farm as a service

▪ Targeting individual or startup developers

❑ Feedback from preliminary users

▪ 28 apps were tested From Jan. 1st to Feb. 28th 2023

▪ Most of our findings can be generalized to a broader range of apps

▪ VDaaS helped detect 3× to 10× more bugs
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Problems for future study

❑ Solutions for vendor-specific discrepancies

❑ Developing cross-component compatibility tests

▪ Possible direction: remoting apps’ interactions (e.g., function call, system 
call, and I/O operation) with proprietary components to physical devices

▪ Possible direction: allow app developers to enrich CTS tests

❑ Issues of regional mobile app ecosystems

▪ Possible direction: a more systematic understanding of the conflicts of 
interest among stakeholders
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Conclusion

❑ A quantitative understanding of the virtual device testing fidelity

❑ In-depth analysis of discrepancy root causes

❑ Design and implementation of a high-fidelity virtual device farm

❑ Practices and experiences of using virtual devices to improve 
testing efficiency and accessibility   

❑ Artifact: https://github.com/Android-Emulation-Testing/emu-fidelity-ae

https://github.com/Android-Emulation-Testing/emu-fidelity-ae
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